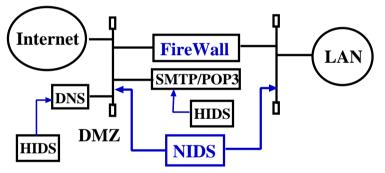
Traffic Analysis on a Mass Mailing Worm and DNS/SMTP

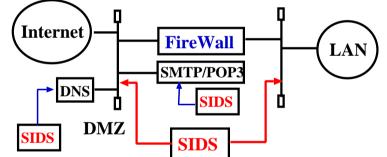
YASUO MUSASHI,[†] KENICHI SUGITANI,[†] and RYUICHI MATSUBA[†]

[†]Center for Multimedia and Information Technologies, Kumamoto University, Kumamoto 860-8555 Japan, E-mail: musashi@cc.kumamoto-u.ac.jp

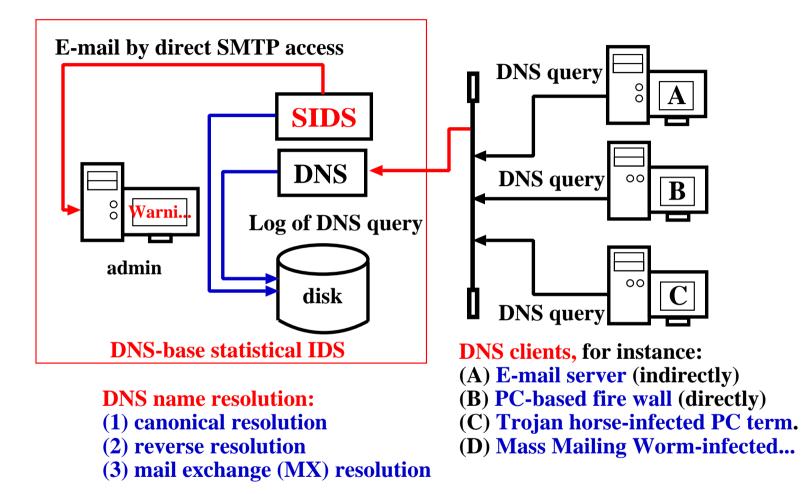
Domain Name System and Intrusion Detection System


The most important network services on the Internet.

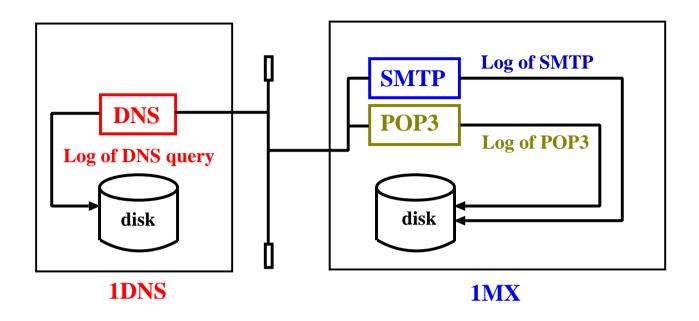
 $\mathbf{SMTP}/\mathbf{POP3}(\mathbf{Mail}), \mathbf{FTP}, \mathbf{HTTP}, \dots \ \Rightarrow \mathbf{gethostbyaddr}(), \mathbf{gethostbyname}(), \dots$


We need to protect the DNS server, firmly.

(B) Statistical Intrusion Detection System

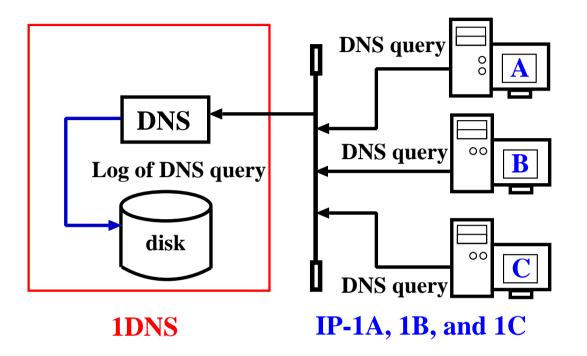


Detection of a Signature with a Pattern File



Detection of a Signature with a Statistical Method

Statistical Intrusion Detection by DNS query Access


This Work (1)

 Statistical investigation on traffic of the DNS query packets between the DNS server (1DNS) and the E-mail server (1MX).

- (2) How are the DNS query packets generated by the SMTP access which depends on the Mass Mailing Worm (MMW)-infected PC terminals?
- (3) To show methods to detect abnormality in E-mail server.

This Work (2)

- (1) Statistical analysis on traffic of the DNS query (D_q) packets between the DNS server (1DNS) and the E-mail server (1A),
- (2) Statistical analysis on D_q traffic between the DNS server (1DNS) and the hijacked PCbased fire wall system (1B).
- (3) Statistical analysis on D_q traffic between the DNS server (1DNS) and the trojan horse virus (THV)-infected PC terminal (1C).

Computations: Normal Equation 1

$$D_{q} = R_{SMTP} + R_{POP3} + R_{FTP} + \cdots$$
⁽¹⁾

$$\boldsymbol{R_i} = \boldsymbol{m_i} \boldsymbol{N_i} \tag{2}$$

 $egin{aligned} D_{ ext{q}} &= ext{the DNS query access between the 1DNS and 1MX.}\ R_i &= ext{the access numbers from the DNS clients.}\ i &= ext{a network protocol, such as SMTP, POP3, FTP, ...}\ N_i &= ext{the access counts of a network application,}\ m_i &= ext{a linear coefficient.}\ R_{ ext{smtp}} + R_{ ext{pop3}} \gg R_{ ext{ftp}} + \cdots (ext{1MX}) \end{aligned}$

$$D_{\rm q} = m_{\rm SMTP} N_{\rm SMTP} + m_{\rm POP3} N_{\rm POP3}$$
(3)

Computations: Normal Equation 2

$$egin{aligned} &A_{ ext{SMTP,POP3}} \; x_{ ext{SMTP,POP3}} = \; d_{ ext{SMTP,POP3}} \ & = \left[egin{aligned} &\sum\limits_{j=1}^n N_{ ext{SMTP},j}^2 & \sum\limits_{j=1}^n N_{ ext{SMTP},j} N_{ ext{POP3},j} \ & \sum\limits_{j=1}^n N_{ ext{SMTP},j} N_{ ext{POP3},j} & \sum\limits_{j=1}^n N_{ ext{POP3},j}^2 \end{array}
ight] \ & (j=1,2,3,\cdots,n; ext{days}) \ & x_{ ext{SMTP,POP3}} = (m_{ ext{SMTP},}m_{ ext{POP3}})^t \ & d_{ ext{SMTP,POP3}} = (\sum\limits_{j=1}^n N_{ ext{SMTP},j} D_{ ext{q},j}, \sum\limits_{j=1}^n N_{ ext{POP3},j} D_{ ext{q},j})^t \end{aligned}$$

(4)

Used Server Daemon Programs and Estimation of Traffic

Used server daemon programs

- 1DNS: The DNS server and the DNS packet recorder. BIND-9.1.3 and iplog-1.2
- 1MX:The SMTP and POP3 servers. ISC sendmail-8.9.3 and Qualcomm qpopper-4.0

Estimation of Traffic

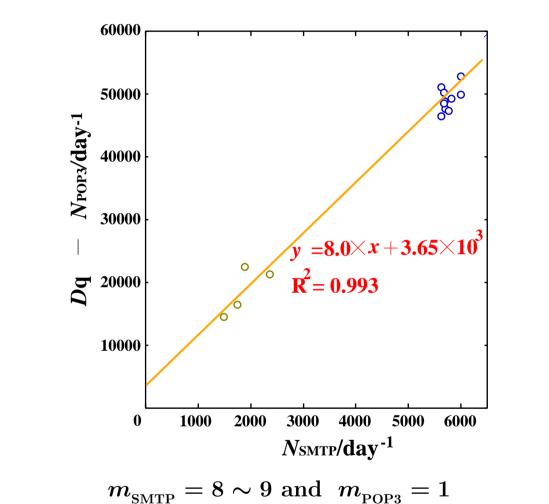
(1) D_{q} :

% grep domain /var/log/messages.1 | wc

(2) $N_{
m SMTP}$:

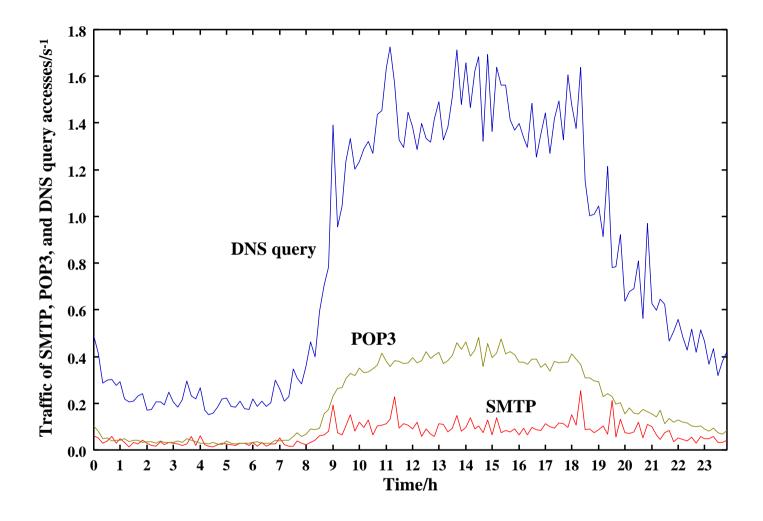
% grep "sendmail" /var/log/syslog.0 | wc

(3) N_{POP3} :


```
% grep "poppe\[" syslog.0 | wc
```

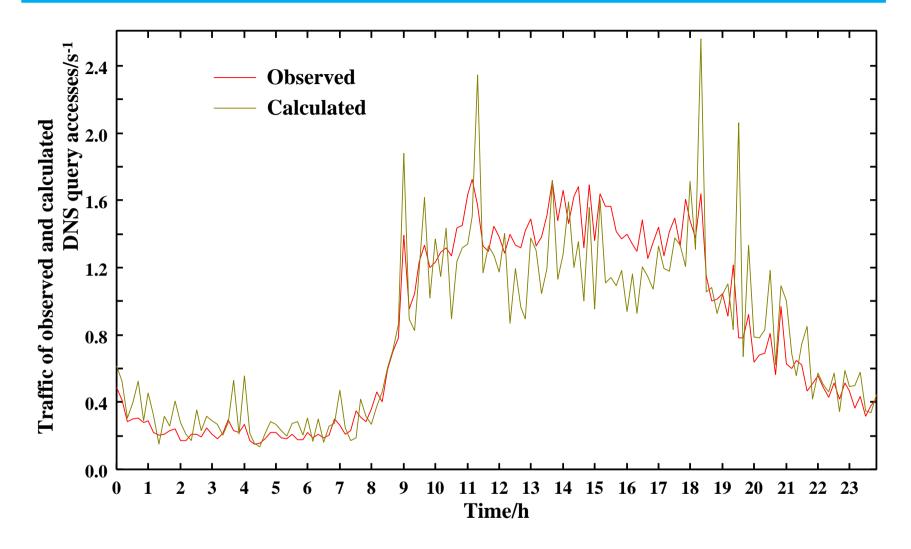
Observed data of N_{SMTP} , N_{POP3} , and D_{q} (day⁻¹).

j	$N_{\scriptscriptstyle \mathrm{SMTP}}$	$N_{ m pop3}$	$D_{ m q}$
2002/02/11	1878	4480	26845
02/13	6010	17701	70327
02/14	5647	17663	68574
02/15	5744	16469	65849
02/17	1487	4004	18370
02/18	5973	16959	67262
02/19	5594	16118	62489
02/20	5666	17178	66718
02/21	5701	15851	63614
02/23	2363	6451	27540
02/24	1749	3814	20199
02/25	5731	16020	63626
02/26	5675	17688	68612


$$egin{aligned} A_{_{ ext{SMTP,POP3}}} &= egin{bmatrix} 3.120 imes 10^8 & 9.084 imes 10^8 \ 9.084 imes 10^8 & 2.652 imes 10^9 \end{bmatrix}, \ d_{_{ ext{SMTP,POP3}}} &= (3.612 imes 10^9, 1.052 imes 10^{10})^t, \ x_{_{ ext{SMTP,POP3}}} &= (8.6, 1.0)^t \ D_{_{ ext{q}}} &= 8.6 N_{_{ ext{SMTP}}} + N_{_{ ext{POP3}}} \end{aligned}$$

$D_{\rm q} - N_{\rm POP3}$ versus $N_{\rm SMTP}$ plot

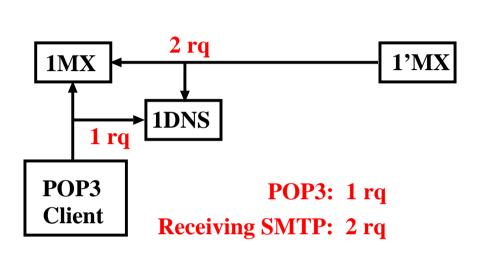
The SMTP access generates the DNS query, rather than that of the POP3 access.

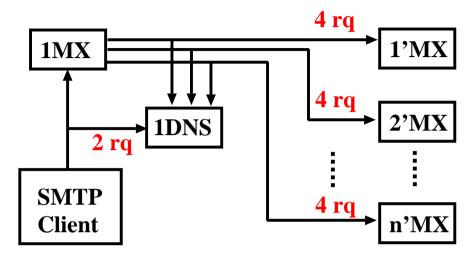

Traffic of SMTP, POP3, and DNS query in 2002/02/13

(1) There are three peaks.

(2) The DNS traffic resembles well the SMTP one.

Observed and calculated DNS traffic in 2002/02/13


The calculated curve resembles well the observed one.


Why does SMTP generate larger DNS traffic than POP3?

(A) POP3 access and

Receiving SMTP access

(B) Transmission SMTP access

Transmission SMTP : 2 + 4n rq

1 rq = **1** request of DNS query packet

DNS query accesses by a SMTP access

$$R_{_{
m POP3}}=N_{_{
m POP3}}$$

(5)

(6)

(7)

Receiving SMTP access

$$R^{
m rec}_{_{
m SMTP}}=2N^{
m rec}_{_{
m SMTP}}$$

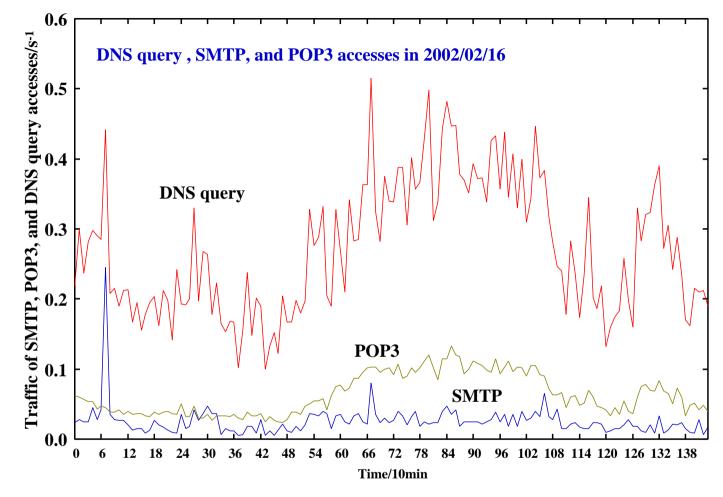
Transmitting SMTP access

$$R^{
m tr}_{
m SMTP} = (2+4n) N^{
m tr}_{
m SMTP}$$

DNS vs SMTP/POP3

$$R_{\rm SMTP} = R_{\rm SMTP}^{\rm rec} + R_{\rm SMTP}^{\rm tr}$$
(8)

$$q = \frac{N_{\rm SMTP}^{\rm rec}}{N_{\rm SMTP}^{\rm rec} + N_{\rm SMTP}^{\rm tr}} \tag{9}$$


$$\begin{split} m_{\rm SMTP} N_{\rm SMTP} &= 2q N_{\rm SMTP} + (1-q)(2+4n) N_{\rm SMTP} \ (N_{\rm SMTP} > 0) \\ m_{\rm SMTP} &= 2q + (1-q)(2+4n) \\ &= 2+4n(1-q) \end{split}$$
 (10)

$$D_{q} = (2 + 4n(1 - q))N_{SMTP} + N_{POP3}$$
 (11)

If $q = 0.50 \sim 0.75$ and $m_{_{\rm SMTP}} = 8.6; n = 3.3 \sim 6.6.$

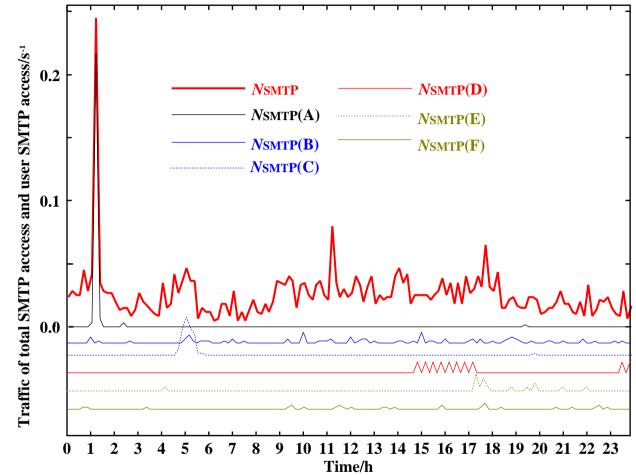
The user of 1MX sends to at least 3 \sim 7 persons by one E-mailing.

Indirect Detection of Mass Mailing Worm-infected PC

- (1) The DNS traffic resembles well the SMTP one.
- (2) Several peaks are found in the curve.

(3) The rippled part in the DNS traffic emerges when the rippled one takes place in the SMTP curve.

Total SMTP and User SMTP accesses


$$N_{\text{SMTP}} = \sum_{i} N_{\text{SMTP}}(i)$$
 (12)

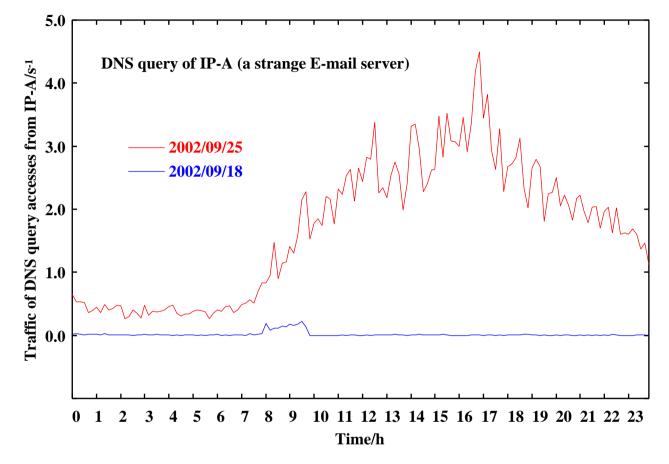
 $N_{\rm SMTP}$ = the total number of the SMTP access in 1MX.

 $N_{\text{SMTP}}(i)$ = the number of the SMTP access by User i,

where i represents User $A \sim F$ is the first \sim the sixth top SMTP users of 1MX.

Traffic of total and user SMTP accesses in 2002/02/16

- (2) Users B, C, E, and F are mailing-list (ML) accounts.
- (3) The saw tooth shaped (rippled) part can be observed the $N_{\rm SMTP}(D)$ curve.

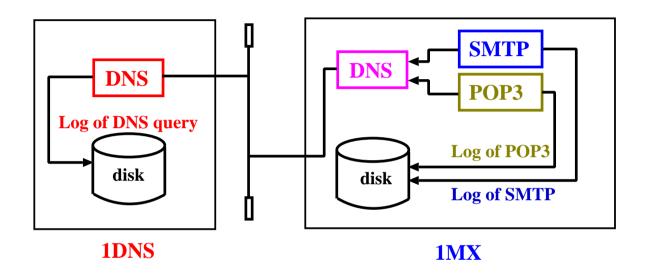

 \Rightarrow Is the PC terminal of user D infected with a mass mailing worm?

Total DNS query and IP-terminal DNS client accesses

$$\boldsymbol{D}_{\mathbf{q}} = \sum_{i} \boldsymbol{D}_{\mathbf{q}}(i) \tag{13}$$

 D_{q} = the total number of the DNS query access to 1DNS. $D_{q}(i)$ = the number of the DNS query access by IP terminal *i*, where *i* represents IP terminals A~C is the top DNS clients of 1DNS.

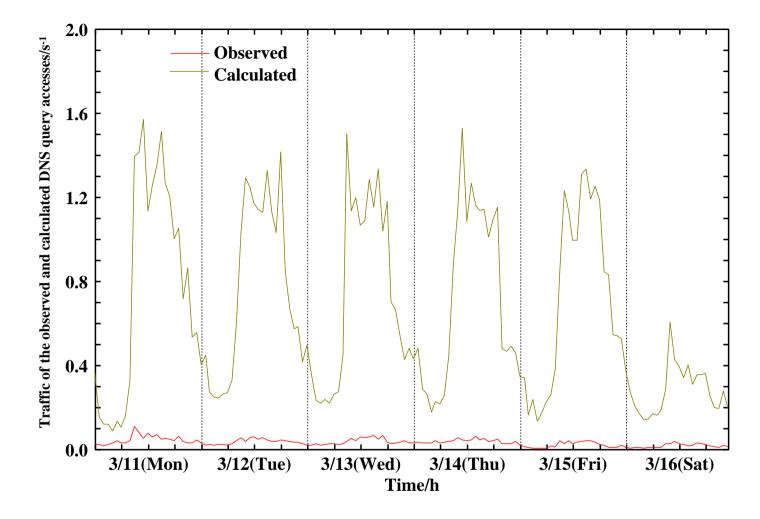
$D_{\rm q}$ traffic curves of IP-A in normal and abnormal days


(1) In a normal day (15th), the D_q curve exhibits nearly zero.

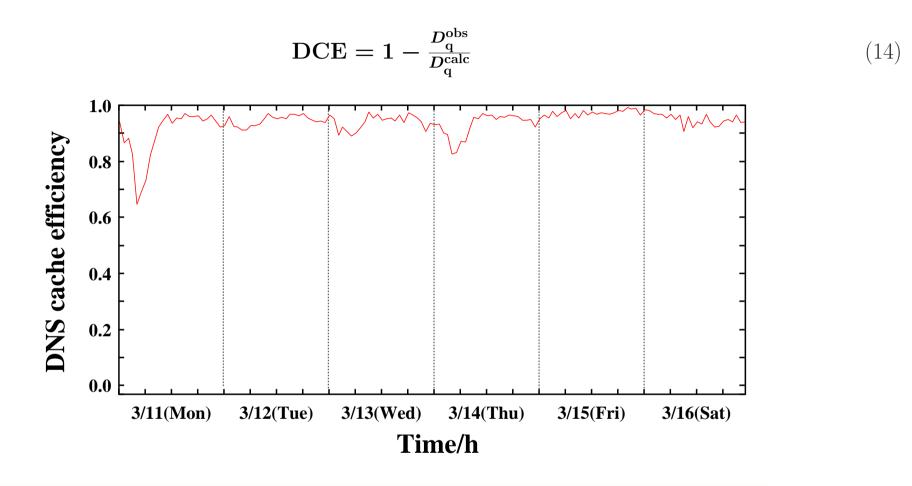
(2) The D_q curve shows a normal curve of the E-mail server.

 $\Rightarrow The DNS query cache system virtually crashes with the increase of the mass mailing worm(MMW).$

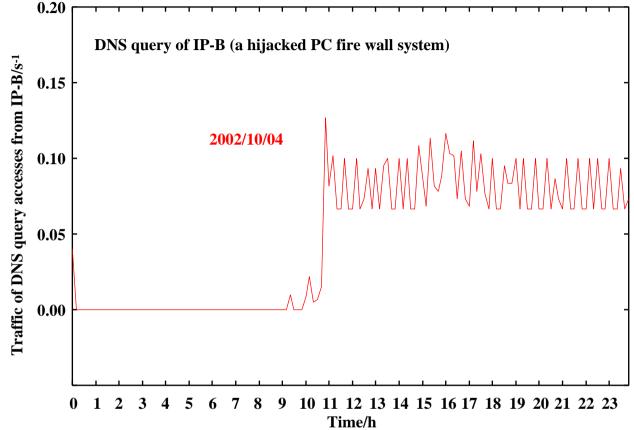
Cache Effects on DNS traffic from E-mail servers


We present the DNS cache effects of the DNS query access between 1DNS and 1MX with the equation ($D_{\rm q}=8.6N_{\rm SMTP}+N_{\rm POP3}).$

Used server daemon programs


- 1DNS: The DNS server and the DNS packet recorder. BIND-9.1.3 and iplog-1.2
- 1MX:The SMTP and POP3 servers. ISC sendmail-8.9.3 and Qualcomm qpopper-4.0

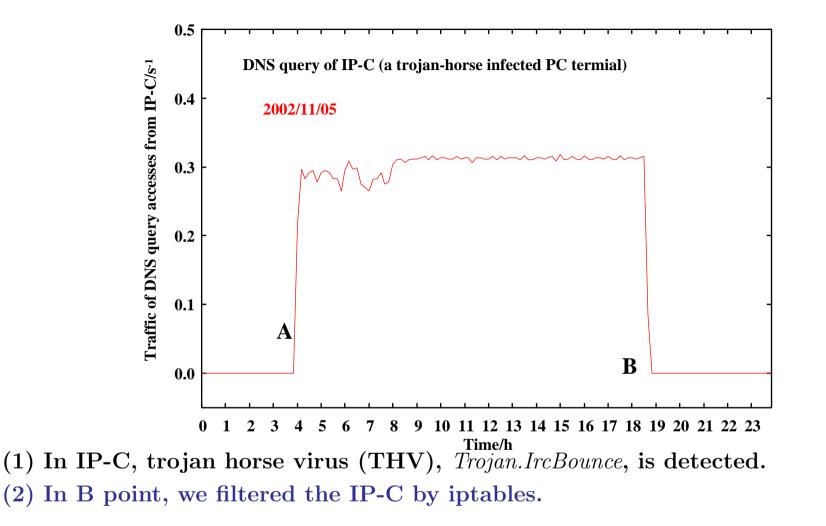
Observed and calculated DNS traffics in 20020311-0316


The observed traffic is considerably much smaller than the calculated one.

Estimated Cache Efficiency of DNS traffic

The DNS cache for SMTP/POP3 services is considerably effective.

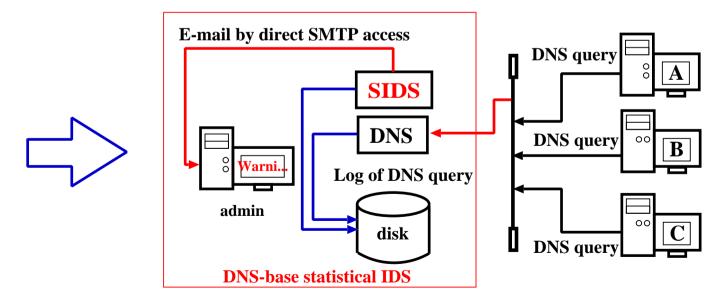
The D_{q} traffic curve of the Hijacked Fire Wall System



(1) The $D_{\rm q}$ curve shows zero in the early morning.

- (2) It rises straightly upon going from 10:30 to 11:00.
- (3) The rippled part can be observed after 11:00 and the system was hijacked.

 \Rightarrow The rippled curve means an indication of remotely hijacked system.


The D_q traffic curve of the Trojan Horse Virus-infected PC

We can detected THV by only observing DNS query access from the DNS client.

Conclusions (1)

- (1) The total number of DNS packets, D_q , are represented as, $D_q = m_{\text{SMTP}} N_{\text{SMTP}} + m_{\text{POP3}} N_{\text{POP3}}$, where N_{SMTP} and N_{POP3} represent the number of the SMTP access and that of the POP3 access, respectively. The linear coefficients m_{SMTP} and m_{POP3} are calculated to be 8.0-8.6 and 1.0. $m_{\text{SMTP}} = 2 + 4n(1-q)$, where q is a mail-receiving rate and n is a number of different domain hosts. \Rightarrow Useful information for estimation and design of an E-mail server.
- (2) In the DNS query and SMTP access curves, a rippled curve emerges when a PC terminal is infected with mass mailing worm. \Rightarrow Mass mailing worm can be detected by only observing DNS query access from E-mail server/PC terminal.

Conclusions (2)

- (1) The DNS query (D_q) cache system virtually crashes with increase in mass mailing worm infection of PC terminals.
- (2) The plateau is observed in the curve of D_q traffic from hijacked and PC-based fire wall system.
- (3) The rippled curve emerges in the D_q traffic from the trojan horse virus-infected PC terminals.