Traffic Analysis on a Domain Name System Server. SMTP Access Generates Many Name-Resolving Packets to a Greater Extent than Does POP3 Access

Yasuo Musashi,* Ryuichi Matsuba,* and Kenichi Sugitani

Center for Multimedia and Information Technologies, Kumamoto University, Kumamoto 860-8555 Japan, E-mail: musashi@cc.kumamoto-u.ac.jp

Table of Contents

Domain Name System and Intrusion Detection System	4
This Work	5
Computations: Normal Equation 1	6
Computations: Normal Equation 2	7
Used Server Daemon Programs and Estimation of Traffic	8
Observed data of N_{SMTP} , N_{POP3} , and D_{q} (day ⁻¹).	9
$D_{\rm q}-N_{_{\rm POP3}}$ versus $N_{_{\rm SMTP}}$ plot	10
Traffic of SMTP, POP3, and DNS query in $2002/02/13$	11
Observed and calculated DNS traffic in $2002/02/13$	12
Traffic of SMTP, POP3, and DNS query in $2002/02/16$	13
Traffic of Weekday and Holiday	14

Why is $m_{_{\rm SMTP}}$ 8.6?	15
DNS query accesses by a SMTP access	16
Receiving SMTP access	16
Transmitting SMTP access	16
DNS vs SMTP/POP3	17
Cache Effects on DNS traffic from E-mail servers	18
Observed and calculated DNS traffics in 20020311-0316	19
Estimated Cache Efficiency of DNS traffic	20
Conclusions	21
Acknowledgement	22
Traffic of SMTP(from,to, and others) in $2002/02/16$	23
Traffic of SMTP(from,to, user and others) in the peak	24

Traffic of DNS and SMTP at 2002/07/16	26

Traffic of DNS and SMTP at 2002/07/17

 $\mathbf{27}$

Domain Name System and Intrusion Detection System

The most important network services on the Internet. SMTP/POP3(Mail),FTP,HTTP,...

We need to protect the DNS server, firmly.

(A) Network Based Intrusion Detection System

(B) Host Based Intrusion Detection System

This Work

- (1) Statistical investigation on traffic of the DNS query packets between the DNS server (1DNS) and the E-mail server (1MX).
- (2) How are the DNS query packets generated by the SMTP and POP3 accesses?
- (3) Cache effects of the DNS query.

Computations: Normal Equation 1

$$D_{q} = R_{SMTP} + R_{POP3} + R_{FTP} + \cdots$$
⁽¹⁾

$$\boldsymbol{R_i} = \boldsymbol{m_i} \boldsymbol{N_i} \tag{2}$$

$$\begin{split} D_{\rm q} &= \text{the DNS query access between the 1DNS and 1MX.} \\ R_i &= \text{the access numbers from the DNS clients.} \\ i &= \text{a network protocol, such as SMTP, POP3, FTP, ...} \\ N_i &= \text{the access counts of a network application,} \\ m_i &= \text{a linear coefficient.} \\ R_{\rm SMTP} + R_{\rm POP3} \gg R_{\rm FTP} + \cdots (1\text{MX}) \end{split}$$

$$D_{\rm q} = m_{\rm SMTP} N_{\rm SMTP} + m_{\rm POP3} N_{\rm POP3} \tag{3}$$

Computations: Normal Equation 2

$$A_{\text{SMTP,POP3}} x_{\text{SMTP,POP3}} = d_{\text{SMTP,POP3}}$$
(4)
$$A_{\text{SMTP,POP3}} = \begin{bmatrix} \sum_{j=1}^{n} N_{\text{SMTP},j}^{2} & \sum_{j=1}^{n} N_{\text{SMTP},j} N_{\text{POP3},j} \\ & \sum_{j=1}^{n} N_{\text{SMTP},j} N_{\text{POP3},j} & \sum_{j=1}^{n} N_{\text{POP3},j}^{2} \end{bmatrix}$$
(4)
$$(j = 1, 2, 3, \cdots, n; \text{days})$$
$$(j = 1, 2, 3, \cdots, n; \text{days})$$
$$x_{\text{SMTP,POP3}} = (m_{\text{SMTP}}, m_{\text{POP3}})^{t}$$
$$d_{\text{SMTP,POP3}} = (\sum_{j=1}^{n} N_{\text{SMTP},j} D_{q,j}, \sum_{j=1}^{n} N_{\text{POP3},j} D_{q,j})^{t}$$

Used Server Daemon Programs and Estimation of Traffic

Used server daemon programs

- 1DNS: The DNS server and the DNS packet recorder. BIND-9.1.3 and iplog-1.2
- 1MX:The SMTP and POP3 servers. ISC sendmail-8.9.3 and Qualcomm qpopper-4.0

Estimation of Traffic

(1) D_{q} :

```
% grep domain /var/log/messages.1 | wc
```

(2) N_{SMTP} :

% grep "sendmail" /var/log/syslog.0 | wc

(3) N_{POP3} :

% grep "poppe\[" syslog.0 | wc

Observed data of N_{SMTP} , N_{POP3} , and D_{q} (day⁻¹).

j	$N_{_{ m SMTP}}$	$N_{\rm POP3}$	D _g
2002/02/11	1878	4480	26845
02/13	6010	17701	70327
02/14	5647	17663	68574
02/15	5744	16469	65849
02/17	1487	4004	18370
02/18	5973	16959	67262
02/19	$\boldsymbol{5594}$	16118	62489
02/20	5666	17178	66718
02/21	5701	15851	63614
02/23	2363	6451	27540
02/24	1749	3814	20199
02/25	5731	16020	63626
02/26	5675	17688	68612

$$egin{aligned} A_{_{ ext{SMTP,POP3}}} = egin{bmatrix} 3.120 imes 10^8 & 9.084 imes 10^8 \ 9.084 imes 10^8 & 2.652 imes 10^9 \end{bmatrix}, \ d_{_{ ext{SMTP,POP3}}} = (3.612 imes 10^9, 1.052 imes 10^{10})^t, \ x_{_{ ext{SMTP,POP3}}} = (8.6, 1.0)^t \ D_{_{ ext{q}}} = 8.6 N_{_{ ext{SMTP}}} + N_{_{ ext{POP3}}} \end{aligned}$$

$D_{\rm q} - N_{\rm POP3}$ versus $N_{\rm SMTP}$ plot

The SMTP access generates the DNS query, rather than that of the POP3 access.

Traffic of SMTP, POP3, and DNS query in 2002/02/13

- (1) There are three peaks.
- (2) The DNS traffic resembles well the SMTP one.

Observed and calculated DNS traffic in 2002/02/13

The calculated curve resembles well the observed one.

Traffic of SMTP, POP3, and DNS query in 2002/02/16

Traffic of Weekday and Holiday

All traffic in weekday is larger than that in holiday.

(A) POP3 access and Receiving SMTP access

(B) Transmission SMTP access

1 rq = **1** request of DNS query packet

DNS query accesses by a SMTP access

$$\boldsymbol{R}_{\boldsymbol{\mathrm{POP3}}} = \boldsymbol{N}_{\boldsymbol{\mathrm{POP3}}} \tag{5}$$

(6)

Receiving SMTP access

$$R^{
m rec}_{
m SMTP}=2N^{
m rec}_{
m SMTP}$$

Transmitting SMTP access

$$R_{\rm SMTP}^{\rm tr} = (2+4n)N_{\rm SMTP}^{\rm tr}$$
⁽⁷⁾

DNS vs SMTP/POP3

$$R_{\rm SMTP} = R_{\rm SMTP}^{\rm rec} + R_{\rm SMTP}^{\rm tr}$$
(8)

$$q = \frac{N_{\rm SMTP}^{\rm rec}}{N_{\rm SMTP}^{\rm rec} + N_{\rm SMTP}^{\rm tr}} \tag{9}$$

$$\begin{split} m_{\rm SMTP} N_{\rm SMTP} &= 2q N_{\rm SMTP} + (1-q)(2+4n) N_{\rm SMTP} \ (N_{\rm SMTP} > 0) \\ m_{\rm SMTP} &= 2q + (1-q)(2+4n) \\ &= 2+4n(1-q) \end{split}$$
(10)

$$D_{q} = (2 + 4n(1 - q))N_{SMTP} + N_{POP3}$$
 (11)

If
$$q = 0.50 \sim 0.75$$
 and $m_{_{\rm SMTP}} = 8.6; n = 3.3 \sim 6.6.$

The user of 1MX sends to at least 3 \sim 7 persons by one E-mailing.

Cache Effects on DNS traffic from E-mail servers

We present the DNS cache effects of the DNS query access between 1DNS and 1MX with the equation ($D_q = 8.6N_{\text{SMTP}} + N_{\text{POP3}}$).

Used server daemon programs

- 1DNS: The DNS server and the DNS packet recorder. BIND-9.1.3 and iplog-1.2
- 1MX:The SMTP and POP3 servers. ISC sendmail-8.9.3 and Qualcomm qpopper-4.0

Observed and calculated DNS traffics in 20020311-0316

The observed traffic is considerably much smaller than the calculated one.

Estimated Cache Efficiency of DNS traffic

The DNS cache for SMTP/POP3 services is considerably effective.

Conclusions

(1) The total number of DNS packets, D_q , are represented as

 $D_{\mathrm{q}} = m_{\mathrm{SMTP}} N_{\mathrm{SMTP}} + m_{\mathrm{POP3}} N_{\mathrm{POP3}}$

where $N_{\rm SMTP}$ and $N_{\rm POP3}$ represent the number of the SMTP access and that of the POP3 access, respectively. The linear coefficients $m_{\rm SMTP}$ and $m_{\rm POP3}$ are calculated to be 8.0-8.6 and 1.0.

(2)
$$m_{_{
m SMTP}} = 2 + 4n(1-q)$$

where q is a mail-receiving rate and n is a number of different domain hosts.

(3) The DNS cache sufficiently affects on the traffic between the DNS server and the E-mail server, and the cache efficiency is about 0.85-0.99. The DNS cache on the E-mail server reduces the traffic between the DNS server and the E-mail server, drastically.

The DNS cache should be applied to the E-mail server.

Acknowledgement

All the calculations were carried out with AMD Athlon, Intel Pentium III, and Sun Microsystems Ultra-Sparc machines in our center.

Traffic of SMTP(from,to, and others) in 2002/02/16

Traffic of SMTP(from,to, user and others) in the peak

(1) $N_{\rm user} \sim N_{\rm from}$ (2) Is the user cracked?

Traffic of DNS and SMTP at 2002/07/15

(1) The curve of N_{to} is rippled in the midnight hours. (2) In the morning, the MMI-worm, Frethem.K, was detected.

Traffic of DNS and SMTP at 2002/07/16

- (1) The curve of N_{to} is rippled in the early morning. (2) Fronthese K are a set of the interest
- (2) Frethem.K was spread by the internet.

Traffic of DNS and SMTP at 2002/07/17

(1) The curve of N_{to} is normal in the early morning. (2) E the K is normal in the early morning.

(2) Frethem.K was disappeared from 1MX.